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Abstract

The present study investigates the heat transfer enhancement mechanism observed with a non-Newtonian fluid having
temperature-dependent viscosity in a 2: 1 rectangular duct. The Reiner—Rivlin constitutive equation was used to model
the non-Newtonian fluid characteristics. The H2 thermal boundary condition, corresponding to an axially-constant heat
flux with a uniform heat flux at the top wall, was used. The local Nusselt numbers calculated for a polyacrylamide
(Separan AP-273) solution showed significant heat transfer enhancements over those of a constant property fluid and
gave excellent agreement with experimental results in both the regions of thermally developing and fully developed. The
heat transfer enhancement results from an increased fluid mixing near the heated top wall, which is attributed to both
the effects of the temperature-dependent viscosity and secondary flow induced by second normal stress difference. The
present study concludes that the heat transfer enhancement of the viscoelastic fluid in a 2: 1 rectangular duct is caused
by the favorably combined effect of temperature-dependent viscosity and normal stress-induced secondary flow. © 1999
Elsevier Science Ltd. All rights reserved.

Nomenclature x non-dimensional axial distance, (/D Re Pr)

C, specific heat of fluid

D, hydraulic diameter Greek symbols

Gz Graetz number, (Re Pr D,/?) 7 non-dimensional shear rate

k: thermal conductivity of fluid M (dimensional) reference viscosity (at inlet tem-
K fluid consistency index perature of 20°C)

n’ flow behavior index for non-Newtonian fluids 1 non-dimensional viscosity, 7/fj.r

Nu Nusselt number n, zero-shear rate viscosity

Pr  Prandtl number /A characteristic time in equation (4)

g’ heat flux ¢ constant Deborah number-variation parameter in
Re Reynolds number equation (4) o . _

Ra, modified Rayleigh number, Gr, Pr { constant viscosity-variation parameter in equation (4)

T non-dimensional temperature, (T— T,)/(§" Dy/k)

V, mnon-dimensional axial velocity, (V,/V,..) Superscript

dimensional
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1. Introduction

Understanding non-Newtonian fluid flows and heat
transfer behavior becomes increasingly important as the
application of non-Newtonian fluids perpetuates through
various industries, including polymer processing and
electronic packaging. However, when one deals with a
practical engineering problem consisting of a non-New-
tonian fluid, it is not easy to estimate the heat transfer
even in a simple geometry such as a rectangular duct.
The reason is that the viscosity of non-Newtonian liquids
varies with both shear rate and temperature, a phenom-
enon which significantly influences the velocity and tem-
perature profiles. Consequently, the heat transfer and
friction coefficients differ from those obtained with a
constant-property fluid, whose viscosity is independent
of shear rate and temperature.

Hartnett and his coworkers [1-3] showed significant
laminar heat transfer enhancements with non-Newtonian
fluids in rectangular ducts, an interesting phenomenon
that had never been observed in a circular pipe flow. The
physical mechanism of the heat transfer enhancement for
the non-Newtonian fluids in the rectangular duct has not
been clearly understood. Several researchers investigated
the enhancement mechanism with experimental and
numerical studies, which could be divided into two
groups: one focuses on the temperature-dependent vis-
cosity and the other is attributed to the secondary flow
induced by the second normal stress difference of non-
Newtonian viscoelastic fluids.

Among the first group, Shin and Cho [4, 5] estimated
the laminar heat transfer of a polyacrylamide (Separan
AP-273) solution by considering both temperature-
dependent and shear-thinning viscosity. They reported
70-200% heat transfer enhancements over those of a
constant-property fluid. Chang et al. [6] considered both
temperature-dependent shear thinning viscosity and an
axially developing secondary flow associated with the
distortion of axial velocity. However, the value of Nusselt
numbers calculated by both Shin and Cho [4] and Chang
et al. [6] were smaller than those experimental results
with the polyacrylamide solution reported by Xie and
Hartnett [1]. Recently, Shin [7] considered the effect of
both the shear rate-dependent thermal conductivity and
temperature-dependent shear thinning viscosity of the
polyacrylamide solution [8] on the laminar heat transfer
behavior in a pipe flow. He found a 5-7% heat transfer
enhancement over those of temperature-dependent shear
thinning viscosity fluids.

Among the second group, Gao and Hartnett [9-10]
investigated the effect of secondary flows for non-
Newtonian viscoelastic fluids on the fully developed lami-
nar heat transfer characteristics in a rectangular duct.
They applied the Reiner—Rivlin constitutive equation
with finite values of the second normal stress coefficient
and found that the secondary flow resulted in a significant

heat transfer enhancement, especially in rectangular
ducts with aspect ratios of 0.5 and 1.0. However, the local
Nusselt numbers numerically calculated with the Reiner—
Rivlin equation were still smaller than those experimental
results by Xie and Hartnett [1].

It was speculated that the heat transfer results reported
by Xie and Hartnett [1] included the effects of both a
temperature-dependent non-Newtonian viscosity and a
normal stress-induced secondary flow. Hence, the objec-
tive of the present paper was to investigate the combined
effect of the temperature-dependent non-Newtonian vis-
cosity and the secondary flow induced by the second
normal stress difference for a non-Newtonian viscoelastic
fluid on the laminar heat transfer behavior in a top wall
heated, 2: 1 rectangular duct.

2. Problem description and assumptions

Figure 1 shows a schematic diagram of the system
under consideration. Fluid entered the duct with a fully-
developed parabolic velocity profile and a uniform tem-
perature, Ti. The present study adopted the H2 thermal
boundary condition corresponding to an axially constant
heat flux with a uniform heat flux at the top wall. In
order to delineate the effect of the buoyancy-induced
secondary flow in the rectangular duct, the top wall was
heated and other three walls were adiabatic.

The non-dimensional forms of the conservation equa-
tions of mass, momentum, and energy for a thermally-
developing flow in a rectangular duct are given as follows:

Continuity:
Ju; 0 o
ox,

q'= constant

top wall heated
other walls adiabatic

U(0,y,z) , developed velocity profile
( developed secondary flow)

Fig. 1. Sketch of the cross-section of a 2: | rectangular duct with
hydrodynamic and thermal boundary conditions.
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The temperature-dependent Carreau model [5] was
used in the present study to consider both the shear-
thinning and the temperature-dependent viscosity of a
non-Newtonian fluid.

[]1(?’ T) - nw]/[HOI‘eflo(;T)inm] = [1 + (D‘)IOST’)})Z](”,7 e
“4)

In the above equation, De is the Deborah number
(AVaye/Dy), € is a constant accounting for the temperature
dependence of time constant (4), and { represents the
slope of 5, vs T curve. The slope becomes negative for
heating case and positive for cooling case. 7'is a dimen-
sionless temperature introduced for the H2 boundary
condition, defined as

(T-T)

(7" Dy/ky)
Equation (4) considers the effects of temperature on the
apparent viscosity and the time constant of a non-
Newtonian fluid.

Non-Newtonian viscoelastic fluids exhibit normal
stress differences under shear flow conditions. Green and
Rivlin [12] reported the existence of a secondary flow
in an elliptical duct flow. They used the Reiner—Rivlin
constitutive equation which was of the following form:

)

0 = fp5ij+11dij+o<3dikdkj (6)
where

Ou; O,
o= (et 2n) ?

For the purpose of computing the secondary flow in a
non-circular duct, the Reiner—Rivlin constitutive equa-
tion was known to be as good as the CEF equation
[11]. Therefore, the present study chose the Reiner—Rivlin
constitutive equation to model the fluid motion of a non-
Newtonian viscoelastic fluid in a rectangular duct.

For the Reiner—Rivlin constitutive equation, the
second normal stress difference becomes zero for a
purely-viscous non-Newtonian fluid. The (dimensionless)
second normal stress difference coefficient, o,, is non-
dimensionalized as follows:

% = (Re™ [ Dypre)ds ®)

Gao and Hartnett [9] applied the Reiner—Rivlin consti-
tutive equation to calculate flow and heat transfer

behavior of polyacrylamide solutions with various a,.
Using the values of a, ranging from 0.003-0.0103, they
obtained the heat transfer enhancement results which
agreed well with the experimental results reported by
Hartnett and Xie [13]. Figure 2 shows a typical example
of the secondary flow field in a fully developed laminar
flow calculated using the Reiner—Rivlin constitutive
equation with o, = 0.0031 in a 2: 1 rectangular duct.

Since detailed descriptions of the boundary conditions
and the solution methodology have been given elsewhere
[4, 14], only a brief summary is given below. The no-slip
boundary condition is applied along the periphery of the
duct for velocity components. The constant heat flux
boundary condition is applied only on the top wall of the
rectangular duct. The other three walls are assumed to
be adiabatic.

Solutions to the problem defined by the foregoing
equations were obtained numerically by a SIMPLE-C
algorithm with finite volume procedures. A QUICK sch-
eme proposed by Hayase et al. [15] was employed for the
convective term in the energy equation for all interior
nodal points while a third-order accurate difference
scheme was employed at the boundary surfaces. For
near-boundary control volumes, there was no need for
a special discretization equation since the boundary con-
dition data could be directly employed at the boundary
face.

Convergence for the present calculation was monitored
by examining how well the discretization equation was
satisfied by the current values of the dependent variables,
¢. Since the order of magnitude of the secondary flow
was 107* of the main flow in the present analysis, it was
necessary to keep the accuracy for the secondary flow
calculation within 0.01%. Thus, the convergence criteria
for the present calculation, which was the absolute
difference of dependent variables at each iteration, was
set to be less than 1077,

|¢)n,stcp_¢n—l.stcp|< 10—7 (9)
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Fig. 2. Secondary flows calculated for a Reiner—Rivlin fluid
(o, = 0.0031) in a fully developed laminar flow through a 2:1
rectangular duct. The upper right quadrant of the duct is shown.
Ret =96, n =0.643.
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3. Results and discussion

The present numerical study used the viscosity data
of an aqueous polyacrylamide (Separan AP-273, 1000
wppm) solution reported by Shin and Cho [5]. The vis-
cosity data shown in Fig. 3 were fitted using equation
(4), and the maximum deviation between the measured
viscosities and the predicted values from equation (4) was
4%. Also, the present numerical study used the Reiner—
Rivlin constitutive equation to represent the second
normal stress difference for the polyacrylamide solution.

Prior to reporting the present numerical results, the
appropriate grid size for a constant-property fluid was
assessed—a case in which well-established values of f Re,;
were available. On a uniform grid, grid sizes were varied,
and the continuity and momentum equations were
solved. The exact analytical value of f Re, in the fully-
developed flow of a 2: 1 rectangular duct was 15.54806;
Shah and London’s value was 15.55733; the cor-
responding value from the present study with 62 x 62
uniform grid was 15.52953. The values of fRe,.; became
independent of grid sizes beyond 41 x41. Hence, the
present study used the results calculated from the 41 x 41
uniform grid size.

Figure 4(a) shows two sets of dimensionless tem-
perature profiles on the mid-plane (i.e., at y = 0.5) cal-
culated for the polyacrylamide solution and a constant
property fluid (CPF) at two axial locations. Note that
z = 0.5 refers to the heated top wall whereas z = 0 refers
to the unheated bottom wall. Near the inlet (i.e., at
x = 0.005), there was not much difference between the
two temperature profiles of the polyacrylamide solution
and CPF. However, in the middle of the thermally-
developing region (i.e., at x = 0.05), the temperature near
the heated top wall for the polyacrylamide solution was
much less than that for CPF. This phenomenon was
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Fig. 3. Variation of the viscosity of polyacrylamide solution

(Separan AP-273, 1000 wppm) with shear rate at three different

temperatures.
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Fig. 4. Dimensionless temperature profiles for polyacrylamide
solution and CPF (constant-property fluid) along the vertical
direction (z) in a 2:1 rectangular duct with heated top wall.
(a) y = 0.5 (mid-plane), and (b) y = 0.1 (near the side wall).

previously reported by Shin and Cho [4]. They attributed
it to an increased velocity gradient near the heated top
wall, which resulted in the heat transfer enhancement and
subsequent reduction of wall temperature.

Figure 4(b) shows two sets of dimensionless tem-
perature profiles on a plane near the side wall (i.e., at
y =0.1). At x = 0.05, the temperature calculated for the
polyacrylamide solution near the unheated bottom wall
was much higher than that for CPF. This phenomenon
can be attributed to an efficient fluid mixing caused by
the secondary flow in the 2: 1 rectangular duct for poly-
acrylamide solution.

In order to delineate the combined effect of variable
viscosity and secondary flow on velocity profiles, Fig. 5
shows the velocity profiles calculated at two different
axial locations (i.e., at x = 0 and 0.05). The velocity pro-
file shown in Fig. 5(a) (i.e., at x = 0) represents the fully-
developed velocity profile for CPF. Compared to the
velocity profiles in Fig. 5(a), those given in Fig. 5(b) show
a much steeper velocity gradient near the heated top wall
(i.e., at z = 0.5). The fact implies that the reduction of
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Fig. 5. Dimensionless axial velocity profiles calculated for poly-
acrylamide solution at two different axial locations in a 2:1
rectangular duct. (a) x =0 (inlet), and (b) x =0.05. z=0.5
represents heated top wall.

the viscosity caused a much steeper velocity gradient near
the heated wall with increasing axial distance for the
polyacrylamide solution than for the constant property
fluid (CPF). Furthermore, the secondary flow may
increase the distortion of velocity profiles associated with
fluid mixing near the heated top wall.

The maximum velocity for the polyacrylamide solution
at y = 0.5 was slightly smaller than that for CPF while
the location of the maximum velocity was almost ident-
ical with that for CPF. Meanwhile, the velocity profile
for the polyacrylamide solution at y = 0.1 was bigger
than that for CPF, and the location of the maximum
velocity was shifted upward. The combined effect of the
variable viscosity and the secondary flow caused a lateral
distortion of the axial velocity. At z = 0.375, the velocity
profile became flat with the same magnitude of the center
velocity along the axial distance. However, the velocity
profile at z = 0.125 became flat with decreasing center
velocity along the axial distance.

Figure 6 shows secondary flow patterns calculated at
four different axial locations (i.e., at x = 0.0, 0.005, 0.02,
and 0.05) at the right half cross section of the rectangular
duct. The distortion of the axial velocity is believed to
affect the secondary flow which is created by the second

normal stress difference of the polyacrylamide solution.
Of note is that when the normal stress difference was not
considered in the constitutive equation, the secondary
flows did not exist, confirming that the secondary flows
were created by the normal stress difference of the poly-
acrylamide solution.

Figure 6(a) shows two symmetric vortices at x =0
when the second normal stress difference of the poly-
acrylamide solution was considered. The magnitude of
the secondary flow increased along the axial distance as
shown in Figs 6(b)—(d). The upper cell of the secondary
flow at x = 0 transforms to one large cell at x = 0.05.
The transformation of the two cells into one large cell
was due to an increasing top wall velocity caused by the
reduction of viscosity near the heated top wall.

Subsequently, the secondary flow cell at the top wall
continues to grow, resulting in a large single cell at
x = 0.05. On the other hand, when the temperature-
dependent viscosity was not considered but the second
normal stress difference of the polyacrylamide solution
was considered, the two cells observed at x = 0.0 con-
tinued to exist throughout the entire axial distance.

Figure 7(a) and (b) show temperature profiles for CPF
and the polyacrylamide solution at x = 0.05, respectively.
The temperature profile for CPF shows a gradual
decrease from the top wall (i.e., z = 0.5) to the bottom
wall (i.e., z = 0), while the temperature did not vary much
along the y-direction. The temperature profile for the
polyacrylamide solution shown in Fig. 7(b) is much more
complex than that for CPF. This is mainly due to the
distortion of the flow associated with the temperature-
dependent viscosity and the secondary flow caused by the
second normal stress difference. Temperature near the
heated top wall for the polyacrylamide solution was much
smaller than that for CPF. For example, the temperature
at the center of the top wall for the polyacrylamide solu-
tion was 0.09 whereas that for CPF was 0.151. However,
the temperature at the corner of the bottom wall was
much higher than that for CPF, which reflects the direc-
tion of the secondary flow as shown in Fig. 6(d).

Figure 8 shows the temperature difference between wall
and bulk, AT, »uk, along the axial direction for both
the polyacrylamide solution and CPF. It is of note that a
thermally-fully-developed flow is obtained when AT, pui
reaches a plateau value. The results in Fig. 8 indicate
that the thermal entrance length, L, for CPF was
approximately 0.2-0.3 in the top-wall-heated rectangular
duct. The polyacrylamide solution yielded much shorter
thermal entrance lengths (Lg, = 0.05-0.07) than for CPF
due to the temperature-dependent viscosity and sec-
ondary flow.

In order to examine the combined effect of the variable
viscosity and the secondary flow on the laminar heat
transfer for the polyacrylamide solution, local Nusselt
numbers are shown at two different modified Rayleigh
numbers (Ra,) in Fig. 9. The local Nusselt numbers cal-
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Fig. 6. Secondary flows calculated for polyacrylamide solution at four different axial locations (i.e., at x = 0, 0.005, 0.02, and 0.05) in

a 2:1 rectangular duct with heated top wall.

culated in the present study gave an excellent agreement
with experiments reported by Xie and Hartnett [1]. In the
thermally-fully-developed region, the present calculation
for CPF yielded a Nusselt number of 3.56, which is almost
identical to the analytical value in a pipe flow
(Nu =3.54). The Nusselt numbers for the poly-
acrylamide solution increased by 200-300% above the
value obtained with CPF.

The laminar heat transfer enhancement with the poly-
acrylamide solution is believed to occur because of the
secondary flow as well as the decrease in the viscosity
near the heated top wall. The latter brings out a sig-
nificant increase in velocity gradients and subsequent
change in the secondary flow pattern, rendering an
efficient fluid mixing and an overall increase in the local
heat convection performance.

4. Conclusion

The present study examined the combined effect of the
temperature-dependent shear-thinning viscosity and the
secondary flow caused by the second normal stress
difference on the laminar heat transfer behavior in a
top-wall-heated 2: 1 rectangular duct. The local Nusselt
numbers calculated for the polyacrylamide solution gave
excellent agreement with the experimental results [3],
showing 200-300% enhancement over those of a con-
stant-property fluid. The heat transfer enhancement
observed with the polyacrylamide solution was due to
the combined effect of temperature-dependent viscosity
and secondary flow. Hence, it is concluded that the main
mechanism of the heat transfer enhancement for the poly-
acrylamide solution was composed with two: one was the
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temperature-dependent non-Newtonian viscosity and the
other was the secondary flow generated by the second
normal stress difference in the 2: 1 rectangular duct.
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Fig. 8. Temperature difference between wall and bulk,
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Fig. 9. Comparison of the present numerical laminar heat trans-
fer results calculated for both CPF and polyacrylamide solution
with experimental results reported by Xie and Hartnett [1] in a
2: 1 rectangular duct with heated top wall.
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